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OBJECTIVE

To develop an eigenmode representation of unsteady aerodynamic
forces on oscillating airfoils and wings and thereby reduce the
size and cost of mathematical models of such forces by several
orders of magnitude.

STATUS OF EFFORT

The eigenmode representation has been successfully constructed
for isolated airfoils and for airfoils in cascade using the
potential flow, Euler equations and viscous flow models. Current
work is directed toward extending this achievement to fully
nonlinear dynamical flow models.

For wings, incompressible potential equations have been used.
Current work is to extend this achievement to compressible
potential and Euler equations of motion.



ACCOMPLISHMENTS

The successful construction of eigenmode aerodynamic models
has led to reductions in computational times for aeroelastic
analyses of up to four orders of magnitude, i.e. a reduction in
computational cost by a factor of up to 104. This permits for the
first time the use of state-of-the-art computational fluid dynamics
(CRD) models in aeroelastic analyses for design purposes. Also,
greater insight into critical physical phenomena has been obtained
by the observation of the interaction between the fluid eigenmodes
and the well known structural modes.

Attached is a recent overview paper summarizing our work to
date. It has recently been published in the AIAA Journal.
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and Spring and Fall of 1995. This has led to individual
meetings with Boeing and Lockheed Martin concerning the
transition of this technology.

Dr. Michael Romanowski (a former graduate student on this
grant) is now engaged by Pratt& Whitney to lead their
effort to incorporate the eigenmode aerodynamic models in
their design system.

* Dr. Aparajit Mahajan (an earlier graduate student at
Duke) developed these ideas further at NASA Lewis
Research Center. He is now responsible for aerospace
computer applications with Cray Research, Inc. in St.
Louis.

Duke faculty and former Ph.D. students now employed in
the jet engine industry recently met with government,
industry and university experts in turbomachinery as part
of the GUIde consortium activity.

DISCOVERIES. INVENTIONS, PATENTS

None



HONORSIAWARDS

Lifetime Recognition:

Earl H. Dowell

* Member/National Academy of Engineering

* Fellow

* American Institute of Aeronautics and Astronautics
* American Society of Mechanical Engineers
* American Academy of Mechanics

* Recipient

AIAA Structures, Structural Dynamics and Materials Award
(the most significant research award in this field)



AIAA JOURNAL
Vol. 34, No. 8, August 1996

Eigenmode Analysis in Unsteady Aerodynamics:
Reduced-Order Models

Earl H. Dowell*
Duke University, Durham, North Carolina 27708-0271

A conceptually novel and computationally efficient technique for computing unsteady flow about isolated air-
foils, wings, and turbomachinery cascades is presented. Starting with either a time-domain or frequency-domain
computational fluid dynamics analysis of unsteady aerodynamic or aeroacoustic flows, a large, sparse eigenvalue
problem is solved using the Lanczos algorithm. Then, using just a few of the resulting eigenmodes, a reduced-order
model of the unsteady flow is constructed. With this model, one can rapidly and accurately predict the unsteady
aerodynamic response of the system over a wide range of reduced frequencies. Moreover, the eigenmode informa-
tion provides important insights into the physics of unsteady flows. Finally, the method is particularly well suited
for use in the active control of aeroelastic and aeroacoustic phenomena, as well as in standard aeroelastic analysis
for flutter or gust response. Numerical results to be presented include 1) comparison of the reduced-order model
to classical unsteady incompressible aerodynamic theory, 2) reduced-order calculations of compressible unsteady
aerodynamics based on the full potential equation, 3) reduced-order calculations of unsteady flow about an isolated
airfoil based on the Euler equations, and 4) flutter analysis using the reduced-order model.

Introduction and difficulty of the hydrodynamic stability theory, the eigenmodeW HY study the eigenmodes of unsteady aerodynamic flows? approach has rarely been pursued for convecting aerodynamic flows.
This is perhaps the fundamental question most often asked,

although occasionally someone will express surprise that eigen- Classical Acoustic and Hydrodynamic Eigenmodes for
modes even exist for these flows. There are several reasons: Contained Fluids

I ) Eigenvalues and eigenmodes for these flows do exist! Perhaps This literature is quite extensive though it has not provided an
they can tell us something about the basic physical behavior of the impetus for extension to convecting, unbounded flows. There is a
flowfield. small, but interesting body of work on nonlinear dynamical models

2) Indeed, ifa relative small number ofeigenmodes are dominant, based upon eigenmodes. See, for example, the monograph edited
this immediately suggests a way to construct an efficient computa- by Abramson!8

tional aerodynamic model using these dominant modes.
3) Finally, by constructing the aerodynamic model in eigenmodal Classical Linear Airfoil Theory

form, it is particularly user friendly in combining the eigenmode Glauret's theory and Theodorsen's extension to unsteady aero-
aerodynamic model with structural modal models to form an aeroe- dynamic flows have echoes of an eigenmode approach, at least as
lastic modal model with a minimum number of degrees of freedom viewed from the present vantage point. Two aspects of the classical
for a given desired level of accuracy. These aeroelastic models will theory deserve to be highlighted.
be especially attractive for design studies including the active con- The classical airfoil theory is indeterminable, without the addi-
trol of such systems. tion of an empirical constraint condition, the Kutta condition. That

This paper is intended to provide an overview and perspective for is, there is a nontrivial pressure distribution (an eigenmode!) that
the future. It is based largely on the work described in Refs. 1-6; gives rise to a zero downwash or airfoil motion. To find the strength
earlier work is noted in those references. of this special pressure distribution, a special condition, the Kutta

Brief and Selected Account of Landmarks condition, must be imposed to make the solution unique.
in Unsteady Aerodynamics Another point to recall is that the Theodorsen function has a

Here several landmarks in unsteady aerodynamics are touched branch cut in the complex frequency domain. This branch cut will
Here Tevery lanticipatem(aeakst in rnste rosp omi aspec f tohed appear in a certain guise in the eigenvalue distributions to be dis-upon. They anticipate (at least in retrospect) some aspects of the cussed in a later section of this paper. See the discussion in any one

eigenmode approach to unsteady aerodynamics that will be pre- of several standard texts.9-1 3

sented in this paper. The account reflects that prior work that has
been most helpful to the author and his colleagues in developing the
eigenmodal approach. Singular Integral Equation Formulation for Classical, Compressible,

Potential Flow over Wings
Hydrodynamic Stability Theory It is well known that this theory has the same basic singularities

One of the classical eigenmode analyses in time-dependent fluid in the kernel of the integral equation as the classical airfoil theory.
mechanics is that which considers the stability of laminar, viscous This suggests its eigenspectrum will be similar to that of the airfoil,
flows. Dating from the work of Rayleigh, Heisenberg, and Lin this though there is an interesting surprise in the eigenspectrum of wings
subject has a rich heritage. See Lin 7 for a clear and elegant discussion as compared to that of the airfoil.9- 13

of the early literature. Perhaps because of the perceived subtlety
Computational Fluid Dynamics Models

Perhaps not surprisingly, it is in someways easiest to see the value
Received Feb. 27, 1995; presented as Paper 95-1450 at the AIAA/ASME/ of an eigenvalueleigenmode approach from examining computa-

ASCE/AHS/ASC 36th Structures, Structural Dynamics, and Materials Con- tional fluid dynamics (CFD) models. This is because a typical CFD
ference, New Orleans, LA, April 10-12, 1995: revision received Sept. 18, model is derived from a finite difference (element, volume) approx-
1995: accepted for publication Sept. 19, 1995. Copyright © 1995 by the
American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

"*Professor and Dean. Department of Mechanical Engineering and space that reduces the set of PDEs to a much larger set of ordinary
Materials Science, School of Engineering. Fellow AIAA. differential equations (ODEs) in time.



Once-one has a set of ODEs, it is not a great leap to think of degrees of freedom. Finally, flow values on the airfoil boundary
eigenvalues and eigenvectors. Although, ironically, it may be easier (for the calculation of lift, for example) can be obtained directly
to make that leap from a mathematical or dynamical system point by Eq. 5.

of view than from a consideration of classical aerodynamic theory Now, for zero forcing (, - 0), assume that the flow field
at time n is related to an initial flow field in the manner thatper se. For a representative discussion of the CFD literature in the : n =tT Eq 6e sto

context of unsteady aerodynamics, see Refs. 14 ajnd 15. q, z"4. Then, Eq. 6 reduces to

Perhaps it is not surprising that the use ofeigenmodes in unsteady A, 4 = Z4. (9)
aerodynamics has come about at.this time in history. Although sim-
ilar work in the context of classical aerodynamic theory could have which represents an eigenvalue problem. Since A,9 is nonsym-
been done some years ago. metric, it will have complex eigenvalues, Z1, Z2. Z3 .3... ZN, as

well as sets of both right eigenvectors, [eR] and left eigenvec-
Eigenmodes and Reduced-Order Models tors, [eL], which are biorthonormal. This dynamic system will

The details vary from one level of fluid model to another as to how be stable if the largest eigenvalue has magnitude less than 1.
Thedetilsvar frm oe lvelof lui moel o aothr a tohowThe reduced coordinate I, is defined such that

one determines the eigenvalues and eigenmodes and then constructs

the reduced order model. Rather than repeat the discussion for each q [e ].- (10)
specific fluid model, here the discussion is presented in generic form.
It is the one that most closely follows the calculation for the Euler Now, the governing system of equations can be decoupled
or Navier-Stokes equations. For specific calculations for a vortex by substituting Eq. 10 into Eq. 6, premultiplying by [eL]T,

and taking advantage of the fact that [eL]T[eR] = [1] andlattice model or a full potential model2-4 the reader is referred toR
the literature. The following discussion is taken from Ref. 5. largest magnitude eigenmodes in this transformation, a system

The Euler and Navier-Stokes equations, represent a system of of R decoupled equations (R << N), the reduced order approxi-
highly nonlinear partial differential equations, which can be writ- mation of the governing equations, is obtained.
ten at each point in the interior of a computational flow field -+

domain as 4, = Q(4i, 4,) = Q(4) or in discrete time as -in+ I = ZR.in + BR&n (I1)

Af +1 where

Ar Q(Tr.q:) (1) ZR?- diaglzi,z, z Z.... ZR} (12)
where 4i represents flow variables at the interior of the computa- 13

tional domain, and 4, represents those on the exterior (boundary) B9 - [eL]T B,9 .
of the computational domain. Flow values on the boundary can also be obtained directly from

There are N interior flow equations, with four equations [for a the reduced coordinate vector by using the following relationship,
S 2D Euler flow] written at each of the - interior grid points. The obtained by substituting Eq. 10 into Eq. 5:
four unknowns at each grid point are [pressure, two components
of momentum and energy for a 2D Euler flow]. Additionally,
there are M nonlinear algebraic boundary condition equations,
also with four equations written at each of the 4 grid points on where

the boundary of the computational domain. DR -C-'DeR. (15)
P-4", 0 (2) If Eqs. II and 14 are applied directly, with a small value of

R, the calculated system response may be considerably in er-
where there are L a-variables, related to airfoil shape, or motion, ror. This is because components of the forcing parallel to the

etc. Eqs. I and 2 form a system of N + M equations and N + M omitted eigenmodes are neglected. The use of a quasi-static cor-
unknowns. rection may substantially reduce this error. This technique is

Now, assuming that the unsteady flow field is a result of small similar to the mode-acceleration method common to structural

dynamic perturbations about steady state, (4 = t + q(r), a = dynamics.
9' 10

S+ &,(r)) and noting that Q(40) = P(40•, o))= 0. Equations With the quasi-static correction, it is assumed that the dynam-
1 and 2 become ics of the system can be approximated by the first R eigenmodes.

The remaining N- R modes respond in only a pseudo-static man-
4 ner. Therefore, it can be shown that the time dependent pertur-

- Aq" + Biq (3) bation flow field can be found by combining that due to the first
Ar R eigenmodes, 9R, and that due to the error in the instantaneous

- forcing 4. The perturbation flow field due to the forcing error
I- D7 - = 0. (4) can easily be found from

The exterior degrees of freedom can be eliminated from Eq. 3 R

by first solving Eq. 4 for 4. r = -Aq]-'B. & - e ReL' B,1 (16)
-n [I --- A- ]i= 1 Z

q,= C q Dq4 + (5)

The following system of N coupled equations, which govern As the reader can see, the basic idea is beautifully simple. The
the linearized system response, is obtained br noting that the "devil is in the details," which is why it has taken several years to
perturbation flow field at time step n + I is n + - +A4" + I, convert this idea into reality as described in the subsequent sections
and then utilizing Eqs. 3 and 5 to give of this paper and as fully appreciated by those who have labored

:n = aq7 + B,9 &, (6) toward this goal of reduced-order modeling.

where Fluid Models
Several fluid models have been considered to date. These range

Aeq = I + Ar(A + BC-'' D) (7) from classical, incompressible, potential flow models to compress-
ible, rotational models (Euler equations). Exploratory work has been

B,q ArBC- E. (8) completed with viscous, Navier-Stokes models, though much re-

Note that the second term on the right hand side of Eq. 6 mains to be done there. Most results have been for two-dimensional

represents a known forcing term [for prescribed airfoil or wing flows over airfoils and cascades. Only for incompressible, vortex
motion]. Also, in Eq. 7, A,, is shown to be a combination of lattice models have three-dimensional flows over wings been con-
conditions at the interior degrees of freedom, A, plus a contri- sidered. No special conceptual difficulty is anticipated in extending
bution from the boundary, while in Eq. 8, Bq, and therefore the other flow models to three dimensions. Clearly the work needs to
forcing, depends only on conditions associated with the exterior be done.
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We will defer a discussion of the details of the several fluid mod- Regarding aerodynamic nonlinearities, these most often may be
els to the subsequent section on results. In this section, an important due to shock waves or separated flow. Note, however, that the pres-
conceptual categorization is discussed based upon, dynamical sys- ence of a shock wave or separated flow does not per se dictate that
tems ideas that transcend all fluid modelg, i.e., fully linear models, the flow is dynamically nonlinear. For sufficiently small airfoil or
dynamically linear models, and fully nonlinear models. wing motions, dynamic linearization of the aerodynamic flow is still

a valid approximation. Of course, the presence of shock waves or

Fully Linear Models separated flow does mean the steady (i.e., static) flow equilibrium is

Most classical aerodynamic models fall into this category, e.g., nonlinear. See, for example, Ref. 16 as an example of a dynamically

small perturbation theory in subsonic or supersonic flow that leads linear CFD approach that includes the effects of shock waves.

to a form of the convected Laplace or wave equation (with constant It might be thought that eigenmodes could not be used for fully
coefficients) for, say, the velocity potential. Although such models nonlinear models but, of course, they can be with some additional
were not the primary motivation for our work on eigenmodes, it work. Again, to be concrete, if an airfoil undergoes large motions,
turns out the reduced-order models for direct solution of aeroelastic a fully nonlinear dynamic flow model must be used to describe the
eigenvalues is a powerful and computationally efficient approach corresponding flowfield.,
for fully linear models as well. How then could eigenmodeý be useful? Conceptually, the idea is

as follows. This procedure will be familiar to those structural dynam-
Dynamically Linear Models icists and aeroelasticians who have studied structural nonlinearities

In transonic flow, for example, even potential flow models must for plates and shells or helicopter blades.te'7 '
be considered in their nonlinear form. Physically this is because the First one considers small motions and determines the eigenvalues
variation of the flowfield over a nonlifting airfoil has a significant and, very importantly, the eigenmodes. One then forms a dynami-
effect on the lift on the airfoil when it oscillates. In other words, the cal coordinate transformation from the (generalized coordinate) un-

nonlifting (static) flowfield is inherently nonlinear and it must be knowns of the nonlinear dynamical system to so-called normal mode

determined from the static solution of the full, nonlinear potential coordinates, e.g., recall Eq. (10) where q are the original unknowns,

model. Fortunately, however, the lift due to the airfoil oscillations [eR] is a matrix whose columns are the (right) eigenvectors of the

(for sufficiently small motion) may be treated as a linear dynamical eigenmodes and s are the normal mode coordinates. This equation

perturbation about the nonlinear static or steady flowfield. essentially defines s in terms of q. Substituting this equation into

This basic idea extends to Euler and Navier-Stokes flows as well. the full nonlinear equations of fluid motion for q, recall Eq. (1), pre-
Hence eigenmode analysis may still be used, but the eigenmodes multiplication of the result by [eL'] and then truncating to a small,

must be those of a small perturbation with respect to the appropriate finite number of s will produce a nonlinear, reduced-order model.
nonlinear static flowfield. Unlike the corresponding linear models where the equations for s

As an aside, it might be noted that this latter restriction can likely will be uncoupled, however, now the equations for s will be coupled

be relaxed in the following way. If we determine the eigenvalues due to the nonlinear terms. Even so, the number of equations to be

and eigenmodes about one airfoil at one Mach number, it is likely solved for a given level of accuracy in determining the flowfield

these might be used, with good accuracy and efficiency, to form will be much smaller than the original number of equations for the

a modal series representation for another not too dissimilar airfoil q unknowns. Hence, a very substantial savings in computational

at a not too removed Mach number. Of course, the coefficients of cost will still be realized. Indeed, it is for fully nonlinear dynamical

the modal expansions would be different for the two airfoils or the models where the full power of the eigenmode approach may be

two different Mach numbers. When eigenmodes for one physical realized. A formal dynamically nonlinear second-order theory has

system are used to represent the solution of another physical system, been constructed extending the analysis of Eqs. (I -16).
these are usually referred to as primitive modes. The use of primitive Two final points are worthy of mention. For nonlinear dynamical

modes is well established in the aeroelastic iterature, see Refs. 9-13, systems, it is possible to extend the idea of a linear eigenmode itself

for example. to nonlinear eigenmodes. This has some theoretical interest. These

When might the use of primitive modes fail? One case might nonlinear eigenmodes still lead to coupled equations, however, so

be, if the eigenmodes of a shockless flow were used to represent their value in practice is often not substantially greater than that

the flow about an airfoil with shocks. Clearly, if two flowfields are of linear eigenmodes. Even so, some day this should and will be

qualitatively different, using the eigenmodes of one to represent the investigated.

flowfield of the other is problematical as a practical matter. Finally, it is worth noting that if one determines the linear eigen-

It should be noted that for an elastic wing, the static wing shape modes for, say, one airfoil/Mach number combination and then uses

may be changed by the aerodynamic flow, and thus the static wing the transformation from q to s for another airfoil/Mach number

shape may vary with dynamic pressure. Therefore, the aeroelastician combination, then the corresponding equations for s will also be

may need to determine the aerodynamic eigenmodes for several coupled even in the linear terms. This. of course, is because we have

dynamic pressures for some applications. In the design of an aircraft used the eigenmodes of one fluid system to represent the dynamics

or wind tunnel model, however, usually the static shape itself is a of a different fluid system. That is, orthogonality of the modes only

design goal and, hence, in that sense, it is known a priori, holds for eigenmodes used for the same dynamical system from
which they were derived.

Fully Nonlinear Models
In aeroelastic models, the dominant nonlinearity may be either Eigenmode Computational Methodology

structural or aerodynamic. Clearly, if a structural nonlinearity is For the simpler (lower dimensional) fluid models, say, the vortex
dominant, which is not infrequently the case, then a dynamically lin- lattice model, the size the eigenvalue matrix is of the order 100 x
ear aerodynamic theory is perfectly adequate to determine not only 100. For such matrices, standard eigenvalue extraction numerical
the onset of flutter, but also the limit cycle oscillations that may procedures may be used. We have used EISPACK, an algorithm
exist. Note, moreover, that the aerodynamic eigenmode approach and computer code available in most computational centers in the
is equally suitable for the construction of either time-domain or United States.
frequency-domain aerodynamic models. Thus aerodynamic eigen- For more complicated fluid models, e.g., the full potential
modes are particularly useful for nonlinear aeroelastic analyses models or Euler models, the order of the eigenvalue matrix
when combined with nonlinear structural models. By contrast, clas- may be in the range of 1,000--+ 10,000 or greater. 2 For ma-
sical aerodynamic models usually provide results in the frequency trices of this size, new developments in eigenvalue extraction
domain and CFD models normally generate results in the time do- have been required. We have used methods based on the Lane-
main. Of course, in principal and with some effort in practice, the zos algorithm. For the full potential equation (-1000 x 100()
classical aerodynamic and CFD models may be used in either the an efficient and effective algorithm is described by Hall et al. 3

frequency or time domains, though with less ease than the eigen- For the Euler equations, a forthcoming paper by Dowell and
mode approach. Romanowski' will be of interest. The discussion of Mahajan et al. 4



* is also recommended to the reader. As the extensions to three- Compressible Potential Flow with a Nontrivial (Nonlinear)

dimensional and viscous flows are made, further developments in Steady Flow
7 eigenvalue and eigenmode determination will likely be required or Florea and Hall2 have presented results for this fluid model

desired, using a finite element method based on a variational principle.
These further developments appear doable, but the amount of Mahajan et al. 4 have also considered this type of flow model. There

work should not be underestimated. Perhaps an appropriaie use of are some distinct facets of their work that are worthy of special men-
primitive modes may be of help. That is, it may be possible to tion here. First of all, there are some technical differences, e.g., in
use the eigenmodes from a simpler fluid model as primitive modes Ref. 4 a finite volume numerical model is used for the full potential
for a more advanced fluid model. Much work remains to be done equation and a somewhat different algorithm is used to extract the
here. eigenvalues.

A final and important point that Ref. 4 has emphasized is The point to be emphasized here, however, is that in Ref. 4 the
that the eigenvalue problem may be formulated in either dis- numerical fluid model has been combined with a typical section,
crete or continuous time. The former allows eigenvalue extraction bending torsion structural model (for a cascade) and the eigenvalues
from existing CFD codes using pre- and postprocessor formats; for the full fluid-structural (aeroelastic system) have been success-
thereby saving the considerable effort of recoding existing CFD fully extracted. Again the aeroelastic or flutter results of this new (p)
codes. method have been compared to those from a conventional (V-g)

method and the conclusions drawn are the same as those found for

Representative Results and Key Insights classical, potential flow.

Classical Incompressible, Potential Flows
The discussion begins with results from simpler fluid models Compressible, Euler Flow with a Nontrivial (Nonlinear) Steady Flow

and proceeds to the more advanced models. In his seminal paper, Mahajan et al.4 pioneered eigenmode studies for this flow model,
Hall' has used a vortex lattice model to describe the eigenmodes of see Ref. 4 and other references therein to earlier work by these au-
inviscid, incompressible, irrotational, two-dimensional and three- thors. Building on this base, Romanowski and Dowell5 have reported
dimensional flows about airfoils and wings. Hall displays the eigen- the first successful construction of reduced-order aerodynamic mod-

Svalues in terms of both z and X where els for Euler flows.
As a reference, Fig. I shows the results for lift on an airfoil due

z =e)(AtU/c) to step change in angle of attack using conventional CFD solution
methods. Results are shown both for a dynamical linear [linearized

with c the airfoil chord. To quote Hall, Sankar-Tang (ST) code] model and a full nonlinear model (ST
code). See references to Sankar's work.4,

5 Note that for the con-
... the eigenvalues are lightly damped, and form a dense line ditions shown the two results agree very well.
which runs close to the imaginary axis in the X-plane. Ile line of Next, the reduced-order model was constructed and the results
eigenvalues intersects the real axis very near the origin, and may compared to those in Fig. 1. In Fig. 2 results are shown for all
be thought of as approximating a branch cut of the aerodynamic (1184), 200,100, and 50 modes. At large times, all of these results
transfer function. Numerical experiments reveal that this line of (1184, 201, and r m e At lare M a of the reut
eigenvalues gets denser as the length ofthe computationalwake is agree, say, for a- (U0 t/c)/M > 4 where M 0.5 is the Mach
increased with constant element size Ax. The line of eigenvalues number. For smaller time where the peak in lift occurs near r = 0.5,
gets longer as the element size Ax is reduced with constant wake the larger the number of modes, the better this peak is replicated.
length. The inclusion of 200 modes does very well. In Fig. 3, a comparison

The presence of a branch cut is consistent with the well-known of the exact results and a single-mode reduced-order model is shown
result that the Theodorsen function contains a branch point at the to make the point that for large time only a few modes are needed
origin, to give good accuracy.

r The corresponding results for a rectangular wing of aspect ratio 5.0 Recalling the Fourier transform relationship between large time
were also determined by Hall. and small frequency, it might be anticipated that for sufficientlyHall then used the eigenvalues and eigenmodes so determined to small reduced frequency, a small number ofeigenmodes would suf-
construct a reduced-order model and compared the results obtained fice. This is confirmed by the results of Figs. 4 and 5 (Figs. 4 and 7 of
with the reduced-order model to those obtained using conventional Ref. 5). At a reduced frequency ofk = 0.4 only one mode gives quite
methods for an oscillating airfoil and wing over a substantial range of reasonable results for this airfoil at this Mach number. Of course,
reduced frequency. The airfoil and wing had total degrees of freedom other airfoils or Mach numbers may require larger numbers of eigen-

of 220 and 480, respectively. The point to be emphasized here is that modes and that will certainly be the case at higher frequencies.
using only 40 or fewer eigenmodes (m < 40), the reduced-order
model gave essentially the same accuracy as the original model for
a reduced frequency up to 1.5. 0

Indeed, if results were only needed for a smaller range of reduced 0.1B
frequency, say, k < 0.5, then fewer than 10 modes are sufficient.
Note, in particular, that the number of eigenmodes needed to obtain 0.16
a given level of accuracy for the lift is no greater for the wing than 0.14
for the airfoil. This is most encouraging. . .

Finally, for the airfoil free to move in plunge and pitch, Hall 0.12
performed a classical bending/torsion typical section flutter anal-
ysis using the reduced-order aerodynamic model and calculating 0 0.1
the true aeroelastic eigenvalues (called a p method, by aeroelas- 0.08 !
ticians) and compared the results to a conventional V-g method.
The latter method, of course, gives only a true, meaningful physical o.os
result when the damping is zero in the flutter mode at the flutter
(neutrally stable) condition. Results were obtained for the complete 0.04

fluid-structural model (m = 220), as well as from a reduced-order 0.02
model (m = 40). The m = 220 and 40 results are in near per-
fect agreement and also agree with the V-g result at the flutter 0 '

0 5 10 15 20 25 30 35 40
condition. Note, however, that significantly different results were
obtained away from the flutter condition. The eigenmode results are Fig. I Lift response vs time for a NACA 0012 airfoil at Mach 0.5 and
physically correct at all velocities, whereas the V -g method is only zero angle of attack, subjected to a 1-deg step change in angle of attack:
correct at the flutter point per se. ST code (-), linearized ST code (. E .), e, = 2, ei = 0 and Ar = 0.004.

ANN
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Fig. 2 Lift response vs time for a NACA 0012 airfoil at Mach 0.5 and
zero angle of attack, subjected to a 1-deg step change in angle of attack; Fig. 5 Lift response vs time for a NACA 0012 airfoil at Mach 0.5 in

coarse mesh, 
6

e = 2, ei = 0, Ar = 0.004, linearized ST, all modes, and plunging oscillation; h/c = 0.01,k = 0.4, coarse mesh, e. = 2, ci = 0,

200 modes overlay (--), 100 modes (-), 50 modes . . A7- = 0.004; linearized ST and 50 modes overlay (--), 10 modes (-), I
modes (.

S0.16 Concluding Remarks Including Comments on
Future Directions

o.14 So where do we stand and where might we go?
Where we stand is that a powerful new approach to modeling un-

0.12 steady aerodynamic flows has been developed. It will provide a level
of accuracy and computational efficiency not previously available.

0.1 In particular, for construction of reduced-order models based upon
rigorous fluid dynamical theory is now possible to 1) calculate true

ufo.os damping and frequency for all aeroelastic modes at all parameter
conditions, 2) provide a practical approach for constructing highly

0.06 efficient, accurate aerodynamic models suitable for designing con-
trol laws and hardware for aeroelastic systems, and 3) make the use

0.04 of CFD models routine in aeroelastic analysis.
This is a considerable achievement. What might the future

0.02 bring? For fully (dynamically) nonlinear models, we should be
able to develop rigorous reduced-order models that will accurately
model large and violent aircraft motions. For aeroacoustics, the

0 5 10 15 20 25 30 35 40 eigenmode/reduced-order model should work well here also, butT far-field boundary conditions will need special attention for this (or

Fig. 3 Lift response vs time for a NACA 0012 airfoil at Mach 0.5 and any other) approach. See Ref. 19 for a discussion of the present
zero angle of attack, subjected to a 1-deg step change in angle of attack; state of the art in computational aeroacoustics. For turbulence and
coarse mesh, E, = 2, Ei = 0, A- = 0.004, linearized ST (-), I mode turbulence models, if we use a standard turbulence model, e.g., k-e,

etc., then the present method formally goes through. However, it is
possible that the real value of the eigenmodel reduced-order model

0.1_ approach will be to encourage the development of better turbulence
models.

Is it possible that one could attack the full Navier-Stokes equa-
0.1 tions using the eigenmode/reduced-order model methodology? The

answer is that in some sense such work has already begun. The
classical hydrodynamical stability theory is based on the boundary-

0.05 layer approximation combined with a highly simplified geometry,
a flat plate of infinite extent. However, that work per se, now some
50-70 years ago in its origins, did not lead to advances beyond the

.0 limitations of the classical infinite geometry. Using an outer invis-
cid model combined with viscous boundary-layer theory, one might

-0.05 cautiously hope to overcome that classical geometrical limitation
and treat the larger scale viscous motions about an airfoil or wing.
With these large-scale motions determined, it might even be possi-

-o0 ble to refine the eigenmode representation for local flow behavior.
Clearly this is only a hypothesis, but a very intriguing one.

Finally, for those (including the author) who still find fascination
-015 20 40 60 80 106 120 140 160 180 206 and challenge in the classical models, it would be very interesting to

explore the question of in what sense do discrete, but closely spaced,
Fig. 4 Lift response vs time for a NACA 0012 airfoil at Mach 0.5 os- eigenvalues represent a branch cut in two- and three-dimensional,
cillating at +1 deg about zero angle of attack; k = 0.4, coarse mesh, fully linearized potential flows?
e = 2, Ei = 0, A-r = 0.004; linearized ST, and 100 modes overlay - In 5 or 10 years, some of these questions should have definitive
50 modes (-), 10 modes (. . .). answers and very likely others will supersede them. If the reader is
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encouraged or inspired to explore eigenmodes for unsteady aerody- IL, Nov. 1994.
namic flows, this paper will have served its purpose. 6 Romanowski, M. C., and Dowell, E. H., "Reduced Order Euler Equa-

tions for Unsteady Aerodynamic Flows: Numerical Techniques," AIAA
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